Load Julia packages (libraries) needed for the snippets in chapter 0
using StatisticalRethinking
gr(size=(600,300))Plots.GRBackend()snippet 3.2
Grid of 1001 steps
p_grid = range(0, step=0.001, stop=1)0.0:0.001:1.0all priors = 1.0
prior = ones(length(p_grid))1001-element Array{Float64,1}:
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
⋮
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0Binomial pdf
likelihood = [pdf(Binomial(9, p), 6) for p in p_grid]1001-element Array{Float64,1}:
0.0
8.374825191600018e-17
5.3438084689919926e-15
6.068652771862778e-14
3.399517250519025e-13
1.2929107734374954e-12
3.848982544705552e-12
9.676432504149003e-12
2.1495830280142858e-11
4.344655104237097e-11
⋮
4.098446591204723e-5
2.7622876204442173e-5
1.7500535729793716e-5
1.0188911348240822e-5
5.248259379330843e-6
2.227480958032322e-6
6.639762126411521e-7
8.34972583212597e-8
0.0As Uniform priar has been used, unstandardized posterior is equal to likelihood
posterior = likelihood .* prior1001-element Array{Float64,1}:
0.0
8.374825191600018e-17
5.3438084689919926e-15
6.068652771862778e-14
3.399517250519025e-13
1.2929107734374954e-12
3.848982544705552e-12
9.676432504149003e-12
2.1495830280142858e-11
4.344655104237097e-11
⋮
4.098446591204723e-5
2.7622876204442173e-5
1.7500535729793716e-5
1.0188911348240822e-5
5.248259379330843e-6
2.227480958032322e-6
6.639762126411521e-7
8.34972583212597e-8
0.0Scale posterior such that they become probabilities
posterior = posterior / sum(posterior)1001-element Array{Float64,1}:
0.0
8.374825191541396e-19
5.3438084689545866e-17
6.068652771820298e-16
3.3995172504952293e-15
1.2929107734284453e-14
3.84898254467861e-14
9.67643250408127e-14
2.149583027999239e-13
4.3446551042066853e-13
⋮
4.0984465911760347e-7
2.7622876204248817e-7
1.7500535729671214e-7
1.01889113481695e-7
5.248259379294106e-8
2.22748095801673e-8
6.639762126365043e-9
8.349725832067523e-10
0.0snippet 3.3
Sample using the computed posterior values as weights
In this example we keep the number of samples equal to the length of p_grid, but that is not required.
N = 10000
samples = sample(p_grid, Weights(posterior), N)
fitnormal= fit_mle(Normal, samples)Normal{Float64}(μ=0.6390045000000019, σ=0.13962815289099068)snippet 3.4
Create a vector to hold the plots so we can later combine them
p = Vector{Plots.Plot{Plots.GRBackend}}(undef, 2)
p[1] = scatter(1:N, samples, markersize = 2, ylim=(0.0, 1.3), lab="Draws")
snippet 3.5
Analytical calculation
w = 6
n = 9
x = 0:0.01:1
p[2] = density(samples, ylim=(0.0, 5.0), lab="Sample density")
p[2] = plot!( x, pdf.(Beta( w+1 , n-w+1 ) , x ), lab="Conjugate solution")
Add quadratic approximation
plot!( p[2], x, pdf.(Normal( fitnormal.μ, fitnormal.σ ) , x ), lab="Normal approximation")
plot(p..., layout=(1, 2))
This page was generated using Literate.jl.